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EVALUATION OF A HYDROGEN RESISTANT
TITANIUM ALUMINIDE ALLOY

ABSTRACT

The Ti-24Al-11ND (Ti-24-11) alloy heat-treated to the fine basketweave microstructure was
shown previously to be hydrogen-tolerant. In order to assess its limit of hydrogen tolerance, the
tensile, creep, fracture toughness, and sustained load crack growth behaviors of this alloy were
studied as a function of hydrogen content. All test specimens were thermally charged with internal
hydrogen and tested at 25 and 600°C. Coupon specimens were used for developing the
hydrogen-charging procedures and for studying compatibility of the alloy with high-temperature,
high-pressure gaseous hydrogen. The mechanical test results indicated that the fine basketweave
microstructure was tolerant to hydride embrittlement for hydrogen contents up to =1500 wt. ppm,
providing that the hydride formed was of the TiH,-type. On the other hand, hydrogen charging
experiments indicated that the Ti-24-11 alloy was severely cracked and pulverized under zero load
when the hydrogen content exceeded 3000 wt. ppm. X-ray diffraction results revealed that the
dichotomous behaviors might be due to the formation of TiH, 4,,-type hydrides at higher hydrogen
contents. Thus, hydrogen embrittlement in the Ti-24-11 alloy with the fine basketweave

microstructure depends on hydrogen content and the nature of hydrides formed.
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INTRODUCTION

Two of the materials that had been considered for possible applications in the National
Aero-Space Plane (NASP) were the Ti;Al- and TiAl-based intermetallic alloys. For these
applications, the candidate materials will encounter high-temperature, high-pressure gaseous
hydrogen [1,2]. Since hydrogen is known to cause embrittlement in many alloys and intermetallics,
compatibility between material and high-temperature, high-pressure gaseous hydrogen must

therefore be examined before either of the two titanium aluminide alloys can be used in the NASP.

Recent studies have shown that Ti,Al-based alloys are susceptible to hydrogen embrittlement.
In the second NASA Hydrogen Workshop [1], it was reported that Ti;Al was attacked by
hydrogen [3]. Hydride formation was observed in both the Ti-24A1-11Nb and stoichiometric Ti,Al
alloys charged with H, [3-6]. The hydrides were observed, via transmission electron microscopy,
to lie on the prism planes in the Ti-24-11 alloy, and on the basal planes in the stoichiometric Ti;Al
alloy. The fracture strength and ductility of H,-charged Ti-24-11 were reduced in tension, but the
yield strength increased under compression [7]. Zero ductility was observed in this alloy when the
H, content reached 4000 wt. ppm [3]. In a 13.8 MPa gaseous H, environment, Ti-24-11 specimens
subject to a constant stress of 75% of the ultimate tensile strength failed in 50 hours at 93°C, but
failed in only 4 hours at 204°C [8]. The Ti-25A1-10Nb-3V-1Mo alloy (Super Alpha-Two) showed
significant decreases in both elongation and reduction in area upon exposure to hydrogen [8,9].
The fracture mechanisms were predominantly cracking in the o, phase and at the /B interface.
In contrast, fracture occurred in the § phase when the alloy was tested in a He environment at the

same pressure [10].

In the Third NASA Hydrogen Workshop [2}, it was reported that two-phase TiAl-base alloys,
[7,8] like Ti,Al-alloys, were susceptible to hydrogen embrittlement in high-temperature,
high-pressure gaseous hydrogen environments [11-14]. Based on this information, the use of either

the Ti,Al- or the TiAl-based alloys for NASP applications does not appear feasible.
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Inarecent study by Chan [15], the feasibility of developing hydrogen-tolerant microstructures
for Ti-24Al-11Nb by heat-treatment processing was reported. A total of thirteen different
microstructures was prepared, and their susceptibility to hydrogen embrittlement was screened
using the Vickers hardness and tensile tests. One particular fine basketweave microstructure was
found to tolerate the presence of up to 1300 wt. ppm internal hydrogen without exhibiting a loss of
tensile ductility or stress rupture after 140 hours of creep at 95% of the yield stress (527 MPa).
These results suggest that the fine basketweave microstructure is tolerant to hydrogen embrittlement
for the test conditions and hydrogen contents investigated. However, the range of temperatures
and hydrogen contents at which the hydrogen-tolerant behavior prevails has not been investigated,
nor the effects of hydrogen on other mechanical properties such as fracture toughness,

elevated-temperature creep, and sustained-load crack growth studied.

In a different study, Majumdar et al. [16] found that Ti-25A1-10Al-3V-1Mo exhibited
extensive cracking and pulverization when exposed to high-temperature (510°C), high-pressure
(13.6 MPa) hydrogen. On the other hand, neither cracking nor pulverization was observed in the
Ti-24Al1-11Nb alloy when it was exposed to 13.6 MPa hydrogen pressure at 538°C for

100 hours [15]. This difference in behaviors is not well understood and has not been studied.

The objective of this program was to evaluate the range of temperatures, properties, and
hydrogen contents within which the fine basketweave microstructure is resistant to hydrogen
embrittlement. The scope of work in this program was divided into four tasks: (1) evaluation of
the tensile behavior; (2) evaluation of fracture toughness; (3) evaluation of creep behavior; and (4)
evaluation of sustained-load crack growth behavior. Property evaluations for all four tasks were
performed at 25 and 600°C and at hydrogen contents up to 2750 ppm. by weight. Thermal annealing

in high-temperature, high-pressure gaseous hydrogen was selected as the means for introducing
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hydrogen into the test specimens. By varying the hydrogen charging conditions, the effects of
high-temperature, high-pressure hydrogen on cracking and pulverization in the Ti-24Al-11Nb alloy

with the fine basketweave microstructure were studied.

EXPERIMENTAL PROCEDURES

A. Material

The Ti-24Al-11Nb titanium aluminide alloy was obtained from TIMET of Henderson, NV,
in the form of a 12.7 mm-thick hot-rolled plate. The ingot alloy was forged at 1150°C, followed
by a B anneal at 1178°C. It was then hot rolled at 982°C to 1038°C, with a final anneal at 982°C
for 15 minutes, and then air cooled. The alloy compositions in weight percent were 13.5 pct Al,
21.3 pct Nb, 0.039 pct Fe,0.58 pct O,,0.003 pct N,, and balance Ti. Eight pieces of Ti-24-11 blocks
31.8 mmin width, 61.3 mmin length, and 12.7 mm in thickness were heat-treated to obtain the fine
basketweave microstructure using the procedures developed earlier [15]. The heat-treatment
procedures included (1) solutionizing at 1100°C in argon for one hour, followed by fan cool to room
temperature, and (2) aging at 815°Cin argon for 8 hours and then fan-cooled to ambient temperature.
The fine-basketweave microstructure, shown in Figure 1, was identical to that obtained in previous

investigations [15,17].

B. Specimen Geometry

After heat-treatment, the blocks were machined into tensile, creep, single-edge-notched
(SEN), and compact-tension (CT) specimens. Design and dimensions of the tensile and creep
specimens were identical, as shown in Figure 2(a). A total of 16 tensile and creep specimens were

prepared. Two SEN specimens were machined initially but one was lost during fatigue-precracking.
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Figure 1. SEM micrographs of Ti-24Al-11Nb with the fine basketweave
microstructure showing the o, matrix (dark phase) and the
discontinuous 3 phase (light phase).
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Figure 2. Dimensions of tensile and creep specimens (a), and compact-
tension specimens (b) used in this study.



In the interest of reducing machining and specimen size, four compact-tension specimens, whose
dimensions are shown in Figure 2(b), were machined as replacements for the lost SEN specimen.
The CT specimens were used for fracture toughness and sustained load crack growth tests.
Furthermore, coupon specimens about 10 mm x 10 mm x 12.7 mm were used for developing the

hydrogen-charging procedures.

C. Hydrogen Charging Procedures

Hydrogen charging was performed in (1) a large autoclave, (2) a hydrogen stress rupture
apparatus, and (3) a small autoclave. Different hydrogen pressures, charging temperatures, and
heating rates were explored in developing the procedures for obtaining 5000 wt. ppm in the fine
basketweave microstructure. The initial hydrogen-charging efforts were based on thermal anneals
of the coupon specimens at hydrogen pressures in the range of 6.8 to 20.4 MPa gaseous hydrogen
at 538°C. These severe charging conditions generally, though not always, led to severe cracking
and pulverization of the coupon specimens. A summary of the hydrogen charging resultsis presented
in Table I. After many trials, the small autoclave was selected for performing all of the hydrogen
charging operations. Designed and built for this program, the small autoclave consisted of a furnace
and a 31.8 mm diameter 304 stainless pipe with caps and tubing connected to a hydrogen source.
During hydrogen charging, the specimens were placed at the center of the autoclave in a basket
made out of stainless steel screen. Both temperature and pressure were monitored continuously

during the charging operation.

The process developed for introducing hydrogen into the test specimens was a two-step
procedures that involved (1) a thermal anneal at 732°C in 0.1 MPa helium for 30 minutes, and (2) a
thermal anneal at 538°C for 16 hours in a gas mixture containing 0.1 MPa helium and various
hydrogen partial pressures ranging from 0.1 MPa to 13.8 MPa. By varying the hydrogen pressure,

it was possible to obtain intact specimens containing 150 to 2750 wt. ppm internal hydrogen, as
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well as severely cracked and pulverized specimens whose hydrogen contents were in excess of
10,000 wt. ppm. In all cases, the heating rate was maintained at 193°C/hour. These procedures

were used for charging hydrogen into tensile, creep, and fracture specimens.

Hydrogen contents of individual coupon specimens were initially analyzed by National
Spectrographic Laboratories (NSL) in Cleveland, Ohio, where the measurements were performed
using a Leco Hydrogen Analyzer. The maximum hydrogen content that could be determined via
this technique was 5000 wt. ppm, which was short of the anticipated hydrogen concentration in
many charged specimens. As a result, many of the coupon specimens and all of the tensile, creep,
and fracture specimens were sent to Luvak, Inc., in Boylston, MA, for hydrogen content
determination. The techniques employed at Luvak were (1) vacuum hot extraction for hydrogen
contents less than 12,700 wt. ppm, and (2) vacuum fusion for hydrogen contents greater than

19,000 wt. ppm.

D. Mechanical Testing

After hydrogen charging, all of the test specimens were electropolished prior to testing.
Tensile, creep, fracture toughness, and sustained load crack growth tests were performed according
to the test matrix shown in Table II. Tensile tests were conducted at 25 and 600°C at a strain rate
of 5 x 10" sec using a servo-hydraulic testing machine equipped with an induction heat unit. The
same setup was used for creep tests, which were performed at 25 and 600°C. The constant load
creep tests at 25°C were conducted at 527 MPa; none of the specimens failed prior to the
discontinuation of tests after 140-160 hours of creep. A constant initial stress of 300 MPa was used

for creep tests at 600°C, which were run until the specimens ruptured.

Fracture toughness tests were performed at 25 and 600°C inside a scanning electron

microscope (SEM) equipped with a high-temperature loading stage whose maximum temperature
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capacity was 800°C [18]. During testing, the crack-tip region was photographed as a function of
the stress intensity levels. The amount of crack extension at each stress intensity level was measured
from the near-tip micrographs and used to obtain the K-resistance curve. The same experimental
setup was also used for performing sustained load crack growth experiments at 600°C. A constant
load was first applied to the cracked specimen. The near-tip region was then photographed as a
function of time of load applied, usually at 30-minute intervals. The crack increment was measured
from the SEM micrographs and divided by the time increment to obtain the sustained load crack
growth rate. After several crack growth measurements were obtained at a given K level, the stress

level was increased to interrogate the crack growth response at a higher K level.

After testing, almost all of the test specimens were sent to Luvak for hydrogen content
determination. In addition, X-ray diffraction was performed at 25°C on selected specimens to
investigate whether or not hydrides were present in these specimens. In all cases, X-ray diffraction
was performed at 40 KV using CuK, radiation with a Ni filter. The X-ray peaks were then identified
by comparing with the standards established by JCPDS [19].

RESULTS
A. Tensile Behavior

The tensile results obtained in this study are summarized in Table III together with those
reported earlier by Chan [15]. The results presented in Table III include the yield stress, ultimate
tensile strength, total and plastic elongations, and hydrogen content for specimens tested at 25and
600°C. In general, the present results are in agreement with the previous study [15]. The main
difference between these two studies is in the tensile behavior of as heat-treated materials, Table IIL.

In the previous study, the total elongation for the as heat-treated materials was 3%, while it was
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=~8.5% in the present case (specimen 43). The higher elongation observed in specimen 43 was due
to the activation of extensive twinning, which was absent in previous specimens and in other

specimens in the present investigation.

A summary of the stress-strain curves for 25°C is presented in Figure 3 without including
specimen 43. Figure 3 shows that the tensile results for 25°C are in agreement with the previous
study [15], which indicated that the fine basketweave microstructure was tolerant to hydrogen under
tensile straining at a strain rate of 5 x 10°° sec™ for hydrogen contents of up to 1300 wt. ppm. The
present study showed that the limit of tolerance exhibited by the fine basketweave microstructure
was as high as 1500 wt. ppm hydrogen, as a total elongation of approximately 3% was maintained
at this hydrogen level. The dependence of plastic elongation on hydrogen content is presented in
Figure 4. The results indicated that a plastic elongation of 1 to 2% was maintained by the fine
basketweave microstructure at hydrogen contents up to 1500 wt. ppm, compared to zero ductility
for an equiaxed microstructure and a coarse basketweave microstructure at H, content of
=500 wt. ppm [15]. There was considerable scatter in the test data in Figure 4; the lowest value of
plastic elongation observed was =1%, while 2.2% was the highest value observed in the charged

specimens.

The stress-strain curves for 600°C are shown in Figure 5 for hydrogen contents of 640 and
1518 wt ppm hydrogen. For these hydrogen levels, hydrogen did not appear to affect appreciably
the ultimate tensile strength or the total elongation. Compared to the ambient temperature behavior,
the yield strength is lower and the total elongation is higher at 600°C at an equivalent hydrogen

level.
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B. Fracture Toughness

The ambient-temperature fracture toughness results of the Ti-24Al-11Nb are presented as
K-resistance curves in Figure 6 for three hydrogen contents. In accord with the tensile ductility,
the fracture toughness value decreased only slightly with increasing hydrogen contents. At a
hydrogen content as high as 2750 wt. ppm hydrogen (specimen 317), the fine basketweave
microstructure still maintained a toughness value of 12.5 MPa\m, compared to 14 MPa\m for

156 wt. ppm H; and 15 MPaVm for 39 wt ppm H; in the as heat-treated condition.

The fracture processes in the hydrogen-charged specimens at 25°C are presented in Figures 7
and 8 for hydrogen contents of 156 and 2750 wt. ppm, respectively. In both figures, the near-tip
regions are shown as a function of the applied stress intensity, K, levels. At 156 wt. ppm hydrogen,
fracture occurred by the formation of a localized zone of microcracks ahead of the main crack tip.
The microcracks linked with the main crack upon increasing K levels and caused final failure at
K = 14 MPaVm. This fracture process was essentially similar to that for the as heat-treated condition

(39 wt. ppm hydrogen), whose failure process was reported earlier [17].

The near-tip region of specimen 317 (2750 wt. ppm hydrogen) was found to contain a fair
number of microcracks after hydrogen-charging. These microcracks opened up upon increasing
K levels from 2.5 t0 9.0 and then to 11.0 MPaVm, as illustrated in Figure 8. Additional microcracks
were also induced during the process. At K=12.4 MPa+m, the microcracks linked together and

coalesced with the main crack, leading to final fracture at K = 12.5 MPavm.

The K-resistance curves for 600°C are shown in Figure 9. Increasing the hydrogen content
reduced the stress intensity level at which the crack started to extend from K¢ = 15 at 70 wt. ppm
H, to Kic=9 MPavm at 420 wt. ppm H,. On the other hand, the crack growth resistance was
increased once crack extension occurred. The amount of crack growth toughness increased with

increasing hydrogen content, as evidenced by a higher slope in the K-resistance curve for 420 wt.
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ppm (Figure 9). In both H-charged and uncharged materials, extensive crack-tip blunting and
microcracking occurred with increasing K levels and crack extensions. The fracture process
observed at various K levels in the H-charged material with 420 wt. ppm hydrogen is shown in

Figure 10, while that for the uncharged material is similar and has been reported elsewhere [17].

C. Creep and Stress Rupture Behavior

Creep tests at 25°C were performed at an initial constant stress of 527 MPa. The creep curves
for three hydrogen levels are shown in Figure 11. The creep strain exhibited by the fine basketweave
microstructure increased slightly with increasing hydrogen content. None of the creep specimens
tested at 25°C failed after 140-160 hours of creep. Tensile tests of post-creep specimens at 25°C

revealed total elongations in the range of 1.5 to 2.0%.

Creep tests at 600°C were conducted at an initial constant stress of 300 MPa. Mixed effects
of hydrogen on the creep rupture life were observed at this temperature, Figure 12. In the range of
80 to 1045 wt. ppm hydrogen, the creep rupture life was essentially unaffected by hydrogen; the

rupture life, however, was reduced for the specimen charged with =1300 wt. ppm hydrogen.

D. Sustained-Load Crack Growth Behavior

The crack growth mechanisms in the uncharged specimen under a sustained load at 600°C
are summarized in Figure 13 for K levels of 5 and 22 MPaVm. AtK =5MPa \m, the initial crack
growth process involved the nucleation of a microcrack ahead of the main crack after the load was
applied for =0.5 hr, Figure 13(a). The microcrack increased in length with increasing time of

loading, Figure 13(b), and eventually linked with the main crack. Subsequentcrack growth occurred
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by direct extension of the main crack without microcrack nucleation, growth, and coalescence
occurring ahead of the crack tip, which remained sharp throughout the K range (5 to 26 MPaym)

examined, Figures 13(c) and (d).

The crack growth mechanisms in the H-charged specimen at sustained K levels of 5 and
10 MPaVm are shown in Figure 14. As in the uncharged condition, crack growth in the
hydrogen-charged specimen occurred by a direct crack extension process without microcrack
formation ahead of the main crack tip, Figures 14(a) and (b). The direct crack growth process
continued at K levels of 8 and 10 MPaym. At these K levels, the main crack developed bifurcated
tips but the growth process appeared to be dominated by a single branch of the crack tip, as illustrated
in Figures 14(c) and (d). The test specimen failed atK > 10 MPa\/E due to a machine malfunction.

As a result, no crack growth data were obtained for K > 10 MPavm.

The sustained load crack growthrates forthe H-charged and uncharged materials are compared
in Figure 15. Each data point in Figure 15 represents averages of three to eight crack growth rate
measurements at a given K level. The result indicates that within the small range of H contents

studied, the sustained load crack growth rate is not affected by hydrogen.

E. Pulverization Behavior

The Ti-24Al-11Nb alloy cracked and pulverized at high hydrogen contents. Both cracking
and pulverization occurred during hydrogen charging at relatively high hydrogen pressures. A
summary of the charging results is presented in Figure 16 in terms of hydrogen content, hydrogen
pressure, and specimen condition after hydrogenation. As indicated earlier, the charging conditions
were a half-hour anneal at 732°C in 0.1 MPa helium, followed by a 16-hour anneal at 538°C in a
gaseous environment containing 0.1 MPa helium and a hydrogen pressure that varied from 0.1 Mpa

to 13.8 MPa. These hydrogen charging conditions resulted in intact specimens with 136 to 2750 wt.
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CRACK GROWTH RATE, 2, um/hr

100.0

-
o
o

-
o

0.1

O As Heat-Treated (60 wt. ppm H,)

8 H,-Charged (134 wt. ppm H,)

Ti-24Al-11Nb
Fine Basketweave
600°C

1.0 10.0

K, MPaym

100.0

Figure 15. Sustained load crack growth results for uncharged (70 wt. ppm
hydrogen) and charged (134 wt. ppm hydrogen) Ti-24Al-11Nb

showing the absence of hydrogen embrittlement.
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ppm hydrogen when the hydrogen pressure was between 0.1 and 1.36 MPa. Chargin gatahydrogen
pressure of 3.4 MPa or above led to cracking and pulverization of the specimens. Figure 17(a)
showsa tensile specimen that exhibited extensive cracking and broke into many pieces after charging
to contain 9880 wt. ppm hydrogen at 3.4 MPa hydrogen pressure, while the crack pattern observed
in a coupon specimen charged to 3910 wt. ppm is shown in Figure 17(b). The coupon specimens
were pulverized into particles ranging from 1-5mm in diameter when charged to exceed

10,000 wt. ppm hydrogen.

Charging at a high hydrogen pressure (e.g., 6.8 MPa) did not always lead to cracking or
pulverization of the Ti-24-11 alloy, Figure 16. Examining the surface of the intact specimens by
Auger spectroscopy revealed the presence of a thin oxygen-rich surface layer approximately
2400 pm in thickness, Figure 18. In contrast, similar oxygen-rich surface layers were not present
in either the cracked or semi-pulverized specimens. A summary of the Auger spectroscopy results
is presented in Table IV. The oxygen-rich layers were observed in specimens that did not receive
a short time anneal at 732°C and were exposed to a gaseous hydrogen environment for a relatively
long duration (e.g., 100 hours). The result suggests that the oxygen-rich surface layer might have
acted as a kinetic barrier that reduces the intake of hydrogen into the test specimens during hydrogen
charging. The existence of such a kinetic barrier helps explain the relatively large variation in the

hydrogen contents of the test specimens despite receiving identical charging conditions.

To better understand the cracking and pulverization behaviors, X-ray diffraction (XRD) was
performed on the intact, cracked, and pulverized specimens to determine whether hydrides were
present in the specimens. Summarized in Table V, the XRD results suggest the presence of two
types of hydrides, which were identified as TiH, and TiH, ,,, in the Ti-24-11 alloy with the fine
basketweave microstructure. Note that many forms of titanium hydrides are possible in titanium
aluminides. Ternary hydrides in the form of (Ti,Al)H, have been reported by Rudman, et al. [20].

Additional forms of hydrides whose identities are yet to be determined have also been observed in
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Figure 17. Crack patterns in Ti-24Al-11Nb: (a) tensile specimen charged
with 9880 wt. ppm hydrogen, and (b) coupon specimen charged
with 3910 wt. ppm hydrogen.
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Figure 18. Auger Electron Spectroscopy (AES) depth profile obtained for a
Ti-24Al-11NDb specimen which remained intact after charging for
100 hours in 13.8 MPa hydrogen at 538°C.
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Ti,Al and TiAl-alloys [4,21,22]. XRD standards for these hydride phases are not available.
Attemnpts to match the observed XRD patterns with TiH [23,24], TiH,,;, NbH, and a beta-Ti
alloy [25] all led to negative results. Based on the information currently available, the observed
XRD patterns matched those for TiH, [26] and TiH, 4 [26,27] the best. It is possible that these
hydrides contain ternary elements. For this reason, they will be referred to TiH,- and TiH, g,,-type
hydrides. Basically, four different X-ray diffraction patterns were observed in these specimens.
The uncharged specimen (specimen 328, 70 wt. ppm hydrogen) exhibited a XRD pattern
corresponding to Ti;Al, Figure 19(a). Specimens that remained intact after hydrogen charging and
contained 147 to =1500 wt. ppm hydrogen showed a XRD pattern that included peaks of Ti;Al and
TiH,, Figure 19(b). The angular (28) positions of most of the strongest peaks for TiH, and Ti,Al
occurred at close proximity (less than a fraction of one deg). The strongest evidence for the presence
of TiH, was the (211) peak of TiH,, which occurred at =<71.0 deg in Figure 19(b), but is absent in
the pattern for Ti,Al in Figure 19(a). When the hydrogen content was 1400 to 2750 wt. ppm,
diffraction peaks for the TiH, o, hydride appeared in the XRD pattern, resulting in a XRD pattern
containing Ti,Al, TiH,, and TiH, s,, peaks. The strongest evidence for the presence of TiH, o4 is
the (311) peak of the TiH, 4y, which occurred at 70° in Figures 19(c) and 19(d), but in neither
Figure 19(a) nor Figure 19(b). At hydrogen contents in excess of 10,000 wt. ppm, all of the
specimens were pulverized and their XRD patterns appeared to be the sum of TiH, and TiH, g,

with little evidence for the presence of Ti;Al in the pulverized specimens, Figure 19(e).

DISCUSSIONS

The results of this investigation reveal that hydrogen affects the mechanical properties of
Ti-24A1-11Nb with the fine basketweave microstructure in two distinctly different manners
depending on the hydrogen content. Athydrogen contents less than 1500 wt. ppm, hydrogen appears

to have little or minor effect on the tensile ductility, fracture toughness, creep rupture, and sustained
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load crack growth behaviors of the fine basketweave material at either 25 or 600°C. At25°C, atwo
percent plastic elongation was maintained at 1520 wt. ppm hydrogen, and the fracture toughness
decreased from 15 MPavm at 39 wt. ppm hydrogen to 12.6 MPavm at 2750 wt. ppm hydrogen.
On the other hand, the fine basketweave microstructure exhibited severe cracking and even
pulverization during hydrogen charging under zero load when the hydrogen content exceeded
approximately 3000 wt. ppm. This type of severe cracking and pulverization behavior has been

observed previously in Ti-25A1-10Nb-3V-1Mo [16], and is not limited to Ti-24Al-11Nb only.

To understand the dichotomous behaviors, it is necessary to understand the mechanism that
causes pulverization. Such an understanding can be provided by correlating the XRD results shown
in Table V with the hydrogen content and specimen condition. Figure 20 shows thatintact specimens
were obtained for hydrogen contents less than 1500 wt. ppm, despite the formation of TiH,-type
hydrides. On the other hand, the occurrence of severe cracking during hydrogen charging coincided
with the formation of TiH, g,,-type hydrides. Pulverization of the test specimens occurred when
Ti;Al was completely converted into the TiH,- and TiH, g,-type hydrides. The result clearly
demonstrates the detrimental effects of the TiH,g,,-type hydride on the integrity of the
Ti-24-11 alloy. The crack pattern in Figure 17 suggests that cracking might be induced by large

internal stresses, probably those associated with the formation of TiH, 4,,-type hydrides.

The lack of influence of TiH,-type hydrides on the tensile ductility of the Ti-24-11 alloy is
in agreement with the previous study by Chan [15], who has observed that the fine basketweave
microstructure is tolerant to hydrogen for up to 1300 wt. ppm hydrogen. The present results indicate
that the limit of hydrogen tolerance of this microstructure is as high as 1500 wt. ppm for tensile
ductility and 2750 wt. ppm for fracture toughness. The lack of a strong hydrogen effect on the
stress rupture behavior is consistent with previous work by Jaffee and Williams [28], who showed
that hydrogen did not reduce the stress rupture life of an o+ Ti-alloy with 800 wt. ppm hydrogen,

despite the formation of hydrides in the microstructure. The lack of hydride embrittlement in the
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Ti-24-11 [15] and the a+B Ti-alloy [28] has been attributed to the discontinuous  phase in the
microstructure, which prevents the formation of a continuous hydride network at the
matrix/B interface and an easy path for crack propagation. This mechanism remains a plausible
one for explaining the lack of hydride embrittlement in the Ti-24-11 alloy, provided that the hydride
formed is the TiH,-type and not the TiH, ,,, variety. Despite its ability to tolerate up to 1500 wt.
ppmhydrogen, potential applications of the Ti-24-11 alloy with the fine basketweave microstructure
as a structural material in a gaseous hydrogen environment appear unlikely because of the
pulverization problem induced by TiH, g,,-type hydrides at hydrogen contents above 3000 wt. ppm.
Previous work has shown that hydrogen embrittlement in Ti-24-11 is microstructure-sensitive [15].
Another key result provided by the present investigation is that besides microstructure, hydrogen
embrittlement in the Ti-24-11 alloy depends on the hydrogen content and on the type of hydrides

formed.

CONCLUSIONS

1. Ti-24Al-11Nb with the fine basketweave microstructure is tolerant to hydrogen for hydrogen
contents at least up to 1500 wt. ppm when the hydride formed in the microstructure is of the

TiH,-type.

2. Severe cracking and pulverization of the Ti-24Al-11Nb alloy occurs when the hydrogen
content exceeds 3000 wt. ppm. Internal tensile stresses associated with the formation of

TiH, 4,,-type hydrides appears to be the cause of pulverization.

3.  Hydrogen embrittlement in the Ti-24-11 alloy depends on microstructure, hydrogen content,

and type of hyrides formed in the microstructure.
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Table II

Test Matrix for Evaluating the Limit of Hydrogen
Tolerance of the Ti-24A1-11Nb Alloy
with the Fine Basketweave Microstructure

Task 1: Tensile Tests of H,-Charged Specimens

Hydrogen Content, wt. ppm

T, C 60 (As heat-treated) 160 220 640 | 720 880 | 1300 | 1500
25 X 043 X |X 031 044 | 039 X 029
600 X 032 045
Task 2: Fracture Toughness of H-Charged Specimens
Hydrogen Content, wt. ppm
T, C 60 (As heat-treated) 150 420 2750
25 X 0325 0317
600 X 0326
Task 3: Constant-Load Creep Tests of H, Charged Specimens
Hydrogen Content, wt. ppm
T, C 60-80 (As heat-treated) 640 1000 1300
25 041 037 X 045
600 042 038 047
Task 4: Sustained-Load Crack Growth Tests
Hydrogen Content, wt. ppm
T, C 60 (As heat-treated) 134
600 0328 0327

X - Data available from other SwRI programs.
O - Completed tests and specimen identification for this program.
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